Researchers at Lawrence Livermore National Laboratory (Lawrence Livermore National Laboratory) have successfully created the conditions needed to heat the fusion fuel itself, called Burning Plasma, a key step in controlling fusion energy. 4D0 ednc
Combustion plasma is required to achieve self-sustaining (self-sustaining) nuclear fusion energy; the plasma that reaches the appropriate temperature and pressure is one of the key elements of nuclear fusion energy, and the energy that can be realized increases. After decades of nuclear fusion research, Livermore researchers claim to have discovered the burning of plasma in a laboratory environment. The test was carried out at the National Ignition Construction Facility (National Ignition Facility,NIF), which is equipped with a laser with an energy output of up to 1.9 megajoules (Megajoules) and spikes of up to 500 terawatts (Terawatts). 4D0 ednc
The paper co-published by physicist Alex Zylstra,Omar Hurricane and others in the journal Nature contains not only the above technical progress, but also related materials (Target) design supporting papers. Livermore researchers use the X-rays produced by NIF in a radiation cavity (Radiation Cavity), which is used to guide a fuel container through the ablation pressure of X-rays during contact. In the process of implosion, mechanical technology is used to heat and heat their mode of production. 4D0 ednc
According to the authors, experiments that produce nuclear fusion reactions use a large number of "external" heating methods to produce plasma, and their system claims to be the first evidence that the nuclear fusion process provides most of the heat. 4D0 ednc
4D0 ednc
4D0 ednc
间接驱动惯性约束(inertial confinement)核融合方法示意图。(来源:《Nature》)4D0 ednc
“在NIF进行的核融合实验成果,为商用核融合能源指引了道路;”核融合产业协会(Fusion Industry Association)执行长Andrew Holland指出,将有越来越多会员公司“以NIF的实验成果为基础,加速朝着以核融合作为能量来源的方向迈进。”4D0 ednc
要让核融合发生作用,燃料必须维持适当的功率平衡,因为许多因素会导致电浆损耗能量。相较之下,核融合和内爆压缩会加热电浆。核融合是一个非线性过程,科学家正努力开发一套所产生能量高于消耗之能量的系统,这也是一个商用反应炉的基本条件。点火克服了泄漏过程,让核融合反应几乎可以自我维持。4D0 ednc
将反应器点火需要将核融合燃料加热到很高的温度和压力,并且把所产生的电浆局限到足够长的时间。自1950年代开始的相关研究,被形容为“在地球上打造一颗恒星”,要把核融合转换为可商用的能源,已经被证明是难解的任务。科学家探索了多种加热和局限电浆的方法,其中最常见的两种分别是“惯性”(inertial)方法──燃料被自身的惯性所局限,以及“磁性”(magnetic)方法──即透过磁场来局限电浆中的带电粒子。4D0 ednc
NIF利用强力雷射来加热并压缩一个小容器中的氢燃料──该雷射的192道光束聚焦于一个胡椒粒大小,装有氘气与氚气的的胶囊,让燃料被压缩至铅的100倍之密度,并使燃料温度大幅上升至摄氏1亿度;当热被施加于靶材,就会产生电浆。4D0 ednc
在Livermore研究人员最近的实验中,他们在一个封装了氢、氘与氚同位素的微小黄金圆筒中,聚焦192道激光束产生10奈秒(ns)的爆炸,来启动整个过程。激光束蒸发黄金、产生X光,将胶囊从内部爆破并产生核融合反应。所产生的核融合反应释出许多种粒子,包含“α粒子”,它们与环绕的电浆互动,进一步地将电浆加热。在一个自维持反应,或点火过程中,被加热的电浆释出更多的α粒子,因此产生更多的热能。4D0 ednc
当核融合反应而非雷射点火成为电浆升温的主要热源,该热源提供了自维持核融合所需的能量。研究人员指出,他们的实验是首次产生燃烧电浆,而且所产生的核融合能量高于压缩和加热核融合燃料时消耗的能量。以往的尝试因受限于控制电浆形状的挑战,在能源生产过程中仅实现净增益。因此这些研究人员宣称,他们证实了一条能提高核融合性能水平的途径。4D0 ednc
不过,在产生燃烧电浆的过程中仍然有能量被浪费掉。NIF的目标之一,是促进和维持核融合反应以产生能量;实现电浆燃烧是有待克服的障碍之一。要实现核融合能源的商业化,对惯性局限核融合的进一步研究势在必行;Livermore研究人员表示,实现燃烧电浆能有助于科学家对整个过程有更充分的了解。4D0 ednc
(参考原文:Livermore Reports Burning Plasma for Fusion Energy,By Maurizio Di Paolo Emilio;本文同步刊登于《电子工程专辑》杂志2022年3月号)4D0 ednc